Package: armspp 0.0.2

armspp: Adaptive Rejection Metropolis Sampling (ARMS) via 'Rcpp'

An efficient 'Rcpp' implementation of the Adaptive Rejection Metropolis Sampling (ARMS) algorithm proposed by Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995) <doi:10.2307/2986138>. This allows for sampling from a univariate target probability distribution specified by its (potentially unnormalised) log density.

Authors:Michael Bertolacci [aut, cre]

armspp_0.0.2.tar.gz
armspp_0.0.2.zip(r-4.5)armspp_0.0.2.zip(r-4.4)armspp_0.0.2.zip(r-4.3)
armspp_0.0.2.tgz(r-4.5-x86_64)armspp_0.0.2.tgz(r-4.5-arm64)armspp_0.0.2.tgz(r-4.4-x86_64)armspp_0.0.2.tgz(r-4.4-arm64)armspp_0.0.2.tgz(r-4.3-x86_64)armspp_0.0.2.tgz(r-4.3-arm64)
armspp_0.0.2.tar.gz(r-4.5-noble)armspp_0.0.2.tar.gz(r-4.4-noble)
armspp_0.0.2.tgz(r-4.4-emscripten)armspp_0.0.2.tgz(r-4.3-emscripten)
armspp.pdf |armspp.html
armspp/json (API)
NEWS

# Install 'armspp' in R:
install.packages('armspp', repos = c('https://mbertolacci.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/mbertolacci/armspp/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

cpp

3.70 score 1 stars 7 scripts 244 downloads 2 exports 1 dependencies

Last updated 5 years agofrom:df7b64aa49. Checks:1 OK, 11 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 04 2025
R-4.5-win-x86_64NOTEMar 04 2025
R-4.5-mac-x86_64NOTEMar 04 2025
R-4.5-mac-aarch64NOTEMar 04 2025
R-4.5-linux-x86_64NOTEMar 04 2025
R-4.4-win-x86_64NOTEMar 04 2025
R-4.4-mac-x86_64NOTEMar 04 2025
R-4.4-mac-aarch64NOTEMar 04 2025
R-4.4-linux-x86_64NOTEMar 04 2025
R-4.3-win-x86_64NOTEMar 04 2025
R-4.3-mac-x86_64NOTEMar 04 2025
R-4.3-mac-aarch64NOTEMar 04 2025

Exports:armsarms_gibbs

Dependencies:Rcpp

Adaptive Rejection Metropolis Sampling in R

Rendered fromarms.Rmdusingknitr::rmarkdownon Mar 04 2025.

Last update: 2019-04-01
Started: 2019-01-09